Sabtu, 13 November 2010

Tabel Periodik


Tabel periodik unsur-unsur kimia adalah tampilan unsur-unsur kimia dalam bentuk tabel. Unsur-unsur tersebut diatur berdasarkan struktur elektronnya sehingga sifat kimia unsur-unsur tersebut berubah-ubah secara teratur sepanjang tabel. Setiap unsur didaftarkan berdasarkan nomor atom dan lambang unsurnya.

Tabel periodik standar memberikan informasi dasar mengenai suatu unsur. Ada juga cara lain untuk menampilkan unsur-unsur kimia dengan memuat keterangan lebih atau dari persepektif yang berbeda.

Tabel periodik standar



Tampilan lain

  • Table periodik standar (s.d.a.) memuat informasi dasar.
  • Tabel alternate
  • Tabel anti
  • Tabel besar memuat hal-hal dasar dan nama lengkap unsur.
  • Tabel sangat besar memuat informasi dasar, nama lengkap unsur, dan massa atomnya.
  • Tabel lebar
  • Tabel diperluas
  • Tabel di Tiongkok
  • Konfigurasi elektron
  • Logam dan bukan logam
  • Tabel periodik diisi menurut blok
  • Daftar unsur menurut nama
  • Daftar unsur menurut lambang unsur
  • Daftar unsur menurut nomor atom
  • Daftar unsur menurut titik didih
  • Daftar unsur menurut titik leleh
  • Daftar unsur menurut kepadatan
  • Daftar unsur menurut massa atom

Dan ini adalah tabel periodik untuk resonansi magnetis.

[sunting] Penjelasan struktur tabel periodik

Jumlah kulit elektron yang dimiliki sebuah atom menentukan periode atom tersebut. Setiap kulit memiliki beberapa subkulit, yang terisi menurut urutan berikut ini, seiring dengan bertambahnya nomor atom:

1s
2s 2p
3s 3p
4s 3d 4p
5s 4d 5p
6s 4f 5d 6p
7s 5f 6d 7p
8s 5g 6f 7d 8p
...

Berdasarkan hal inilah struktur tabel disusun. Karena elektron terluar menentukan sifat kimia suatu unsur, unsur-unsur yang segolongan umumnya mempunyai sifat kimia yang mirip. Unsur-unsur segolongan yang berdekatan mempunyai sifat fisika yang mirip, meskipun massa mereka jauh berbeda. Unsur-unsur seperiode yang berdekatan mempunyai massa yang hampir sama, tetapi sifat yang berbeda.

Sebagai contoh, dalam periode kedua, yang berdekatan dengan Nitrogen (N) adalah Karbon (C) dan Oksigen (O). Meskipun massa unsur-unsur tersebut hampir sama (massanya hanya selisih beberapa satuan massa atom), mereka mempunyai sifat yang jauh berbeda, sebagaimana bisa dilihat dengan melihat alotrop mereka: oksigen diatomik adalah gas yang dapat terbakar, nitrogen diatomik adalah gas yang tak dapat terbakar, dan karbon adalah zat padat yang dapat terbakar (ya, berlian pun dapat terbakar!).

Sebaliknya, yang berdekatan dengan unsur Klorin (Cl) di tabel periodik, dalam golongan Halogen, adalah Fluorin (F) dan Bromin (Br). Meskipun massa unsur-unsur tersebut jauh berbeda, alotropnya mempunyai sifat yang sangat mirip: Semuanya bersifat sangat korosif (yakni mudah bercampur dengan logam membentuk garam logam halida); klorin dan fluorin adalah gas, sementara bromin adalah cairan bertitik didih yang rendah; sedikitnya, klorin dan bromin sangat berwarna.

Klasifikasi

Golongan

Kolom dalam tabel periodik disebut golongan. Ada 18 golongan dalam tabel periodik baku. Unsur-unsur yang segolongan mempunyai konfigurasi elektron valensi yang mirip, sehingga mempunyai sifat yang mirip pula. Ada tiga sistem pemberian nomor golongan. Sistem pertama memakai angka Arab dan dua sistem lainnya memakai angka Romawi. Nama dengan angka Romawi adalah nama golongan yang asli tradisional. Nama dengan angka Arab adalah sistem tatanama baru yang disarankan oleh International Union of Pure and Applied Chemistry (IUPAC). Sistem penamaan tersebut dikembangkan untuk menggantikan kedua sistem lama yang menggunakan angka Romawi karena kedua sistem tersebut membingungkan, menggunakan satu nama untuk beberapa hal yang berbeda.

Golongan bisa dianggap sebagai cara yang paling penting dari mengklasifikasi unsur. Pada beberapa golongan, unsur-unsurnya ada yang sangat mirip sifatnya dan memiliki kecenderungan sifat yang jelas jika ditelusuri menurun di dalam kolom. Golongan-golongan ini sering diberi nama umum (tak sistematis) sebagai contoh: logam alkali, logam alkali tanah, halogen, khalkogen, dan gas mulia. Beberapa golongan lainnya dalam tabel tidak menampilkan sebanyak persamaan maupun kecenderungan sifat secara vertikal (sebagai contoh Kelompok 14 dan 15), golongan ini tidak memiliki nama umum.

Periode

Baris dalam tabel periodik disebut periode. Walaupun golongan adalah cara yang paling umum untuk mengklasifikasi unsur, ada beberapa bagian di tabel unsur yang kecenderungan sifatnya secara horisontal dan kesamaan sifatnya lebih penting dan mencolok daripada kecenderungan vertikal. Fenomena ini terjadi di blok-d (atau "logam transisi"), dan terutama blok-f, dimana lantinida dan aktinida menunjukan sifat berurutan yang sangat mencolok.

Periodisitas Sifat Kimia

Nilai utama dari tabel periodik adalah kemampuan untuk memprediksi sifat kimia dari sebuah unsur berdasarkan lokasi di tabel. Perlu dicatat bahwa sifat kimia berubah banyak jika bergerak secara vertikal di sepanjang kolom di dalam tabel dibandingkan secara horizontal sepanjang baris.

Kecenderungan Periodisitas dalam Golongan

Kecenderungan periodisas dari energi ionisasi

Teori struktur atom mekanika kuantum modern menjelaskan kecenderungan golongan dengan memproposisikan bahwa unsur dalam golongan yang sama memiliki konfigurasi elektron yang sama dalam kulit terluarnya, yang merupakan faktor terpenting penyebab sifat kimia yang mirip. Unsur-unsur dalam golongan yang sama juga menunjukkan pola jari-jari atom, energi ionisasi, dan elektronegativitas. Dari urutan atas ke bawah dalam golongan, jari-jari atom unsur bertambah besar. Karena lebih banyak susunan energi yang terisi, elektron valensi terletak lebih jauh dari inti. Dari urutan atas, setiap unsur memiliki energi ionisasi yang lebih rendah dari unsur sebelumnya karena lebih mudahnya sebuah elektron terlepas karena elektron terluarnya yang semakin jauh dari inti. Demikian pula, suatu golongan juga menampilkan penurunan elektronegativitas dari urutan atas ke bawah karena peningkatan jarak antara elektron valensi dan inti.

Kecenderungan Periodisasi Periode

Unsur-unsur dalam periode yang sama memiliki kecenderungan dalam jari-jari atom, energi ionisasi, afinitas elektron dan elektronegativitas. Dari kiri ke kanan, jari-jari atom biasanya menurun. Hal ini terjadi karena setiap unsur mendapat tambahan proton dan elektron yang menyebabkan elektron tertarik lebih dekat ke inti. Penurunan jari-jari atom ini juga menyebabkan meningkatnya energi ionisasi jika bergerak dari urutan kiri ke kanan. Semakin rapat terikatnya suatu unsur, semakin banyak energi yang diperlukan untuk melepaskan sebuah elektron. Demikian juga elektronegativitas, yang meningkat bersamaan dengan energi ionisasi karena tarikan oleh inti pada elektron. Afinitas elektron juga mempunyai kecenderungan, walau tidak semenyolok pada sebuah periode. Logam (bagian kiri dari perioda) pada umumnya memiliki afinitas elektron yang lebih rendah dibandingkan dengan unsur nonmetal (periode sebelah kanan), dengan pengecualian gas mulia.

Sejarah

Artikel utama: Sejarah tabel periodik

Tabel periodik pada mulanya diciptakan tanpa mengetahui struktur dalam atom: jika unsur-unsur diurutkan berdasarkan massa atom lalu dibuat grafik yang menggambarkan hubungan antara beberapa sifat tertentu dan massa atom unsur-unsur tersebut, akan terlihat suatu perulangan atau periodisitas sifat-sifat tadi sebagai fungsi dari massa atom. Orang pertama yang mengenali keteraturan tersebut adalah ahli kimia Jerman, yaitu Johann Wolfgang Döbereiner, yang pada tahun 1829 memperhatikan adanya beberapa triade unsur-unsur yang hampir sama.

Beberapa triade
Unsur Massa atom Kepadatan
Klorin 35,5 0,00156 g/cm3
Bromin 79,9 0,00312 g/cm3
Iodin 126,9 0,00495 g/cm3

Kalsium 40,1 1,55 g/cm3
Stronsium 87,6 2,6 g/cm3
Barium 137 3,5 g/cm3
Temuan ini kemudian diikuti oleh ahli kimia Inggris, yaitu John Alexander Reina Newlands, yang pada tahun 1865 memperhatikan bahwa unsur-unsur yang bersifat mirip ini berulang dalam interval delapan, yang ia persamakan dengan oktaf musik, meskipun hukum oktaf-nya diejek oleh rekan sejawatnya. Akhirnya, pada tahun 1869, ahli kimia Jerman Lothar Meyer dan ahli kimia Rusia Dmitry Ivanovich Mendeleyev hampir secara bersamaan mengembangkan tabel periodik pertama, mengurutkan unsur-unsur berdasarkan massanya. Akan tetapi, Mendeleyev meletakkan beberapa unsur menyimpang dari aturan urutan massa agar unsur-unsur tersebut cocok dengan sifat-sifat tetangganya dalam tabel, membetulkan kesalahan beberapa nilai massa atom, dan meramalkan keberadaan dan sifat-sifat beberapa unsur baru dalam sel-sel kosong di tabelnya. Keputusan Mendeleyev itu belakangan terbukti benar dengan ditemukannya struktur elektronik unsur-unsur pada akhir abad ke-19 dan awal abad ke-20

Jumat, 12 November 2010

Biologi

Biologi (ilmu hayat) adalah ilmu mengenai kehidupan. Istilah ini diambil dari bahasa Belanda "biologie", yang juga diturunkan dari gabungan kata bahasa Yunani, βίος, bios ("hidup") dan λόγος,logos ("lambang", "ilmu"). Dahulu—sampai tahun 1970-an—digunakan istilah ilmu hayat (diambil dari bahasa Arab, artinya "ilmu kehidupan").

Obyek kajian biologi sangat luas dan mencakup semua makhluk hidup. Karenanya, dikenal berbagai cabang biologi yang mengkhususkan diri pada setiap kelompok organisme, seperti botani, zoologi, dan mikrobiologi. Berbagai aspek kehidupan dikaji. Ciri-ciri fisik dipelajari dalam anatomi, sedang fungsinya dalam fisiologi; Perilaku dipelajari dalam etologi, baik pada masa sekarang dan masa lalu (dipelajari dalam biologi evolusioner dan paleobiologi); Bagaimana makhluk hidup tercipta dipelajari dalam evolusi; Interaksi antarsesama makhluk dan dengan alam sekitar mereka dipelajari dalam ekologi; Mekanisme pewarisan sifat—yang berguna dalam upaya menjaga kelangsungan hidup suatu jenis makhluk hidup—dipelajari dalam genetika.

Saat ini bahkan berkembang aspek biologi yang mengkaji kemungkinan berevolusinya makhluk hidup pada masa yang akan datang, juga kemungkinan adanya makhluk hidup di planet-planet selain bumi, yaitu astrobiologi. Sementara itu, perkembangan teknologi memungkinkan pengkajian pada tingkat molekul penyusun organisme melalui biologi molekular serta biokimia, yang banyak didukung oleh perkembangan teknik komputasi melalui bidang bioinformatika.

Ilmu biologi banyak berkembang pada abad ke-19, dengan ilmuwan menemukan bahwa organisme memiliki karakteristik pokok. Biologi kini merupakan subyek pelajaran sekolah dan universitas di seluruh dunia, dengan lebih dari jutaan makalah dibuat setiap tahun dalam susunan luas jurnal biologi dan kedokteran.[1]

Kamis, 11 November 2010

F1 Add On Firefox Untuk Memudahkahkan Berbagi Link Dari Mozilla Messaging


Munculnya jejaring sosial telah menempatkan kepentingan yang lebih besar pada kemampuan untuk berbagi link dan informasi dengan mudah pada teman-teman dan sekarang para pengembang dari divisi Mozilla Messaging telah datang dengan F1, sebuah ekstensi browser Firefox yang bertujuan untuk membuat berbagi konten di web sosial jauh lebih mudah. Sebelumnya kami telah membahas browser baru bernama Rockmelt yang lebih merupakan browser yang ditujukan untuk integrasi dengan social network seperti Facebook dan berbagi link maupun content dengan mudah.

Add on Firefox bernama F1 ini memberikan pengguna cara lebih sederhana yang akan menampilkan frame all-in-one di bagian atas konten di browser yang mereka buka, dan pengguna akan dapat dengan mudah berbagi halaman yang mereka lihat ke Facebook, Twitter dan Gmail. Jika ekstensi F1 sudah dipasang, kita tidak akan perlu khawatir untuk memasang toolbar lain untuk berbagi link. (sumber)

Rabu, 10 November 2010

Logaritma

Logaritma adalah operasi matematika yang merupakan kebalikan dari eksponen atau pemangkatan.

Rumus dasar logaritma:

bc= a ditulis sebagai blog a = c (b disebut basis)

Beberapa orang menuliskan blog a = c sebagai logba = c.

Basis

Basis yang sering dipakai atau paling banyak dipakai adalah basis 10, e≈ 2.71828... dan 2.

Notasi

  • Di Indonesia, kebanyakan buku pelajaran Matematika menggunakan notasi blog a daripada logba. Buku-buku Matematika berbahasa Inggris menggunakan notasi logba
  • Beberapa orang menulis ln a sebagai ganti elog a, log a sebagai ganti 10log a dan ld a sebagai ganti 2log a.
  • Pada kebanyakan kalkulator, LOG menunjuk kepada logaritma berbasis 10 dan LN menunjuk kepada logaritma berbasis e.
  • Pada beberapa bahasa pemrograman komputer seperti C,C++,Java dan BASIC, LOG menunjuk kepada logaritma berbasis e.
  • Terkadang Log x (huruf besar L) menunjuk kepada 10log x dan log x (huruf kecil L) menunjuk kepada elog x.

Mencari nilai logaritma

Cara untuk mencari nilai logaritma antara lain dengan menggunakan:

Rumus

  • xlog x = 1
  • x^nlog xm = m/n
  • blog x + blog y = blog (x.y)
  • blog x - blog y = blog (x:y)
  • (alog b)(blog c) = alog c
  • b log xn = n.blog x
  • b log x = klog x : klog b

Kegunaan logaritma

Logaritma sering digunakan untuk memecahkan persamaan yang pangkatnya tidak diketahui. Turunannya mudah dicari dan karena itu logaritma sering digunakan sebagai solusi dari integral. Dalam persamaan bn = x, b dapat dicari dengan pengakaran, n dengan logaritma, dan x dengan fungsi eksponensial.

Sains dan teknik

Dalam sains, terdapat banyak besaran yang umumnya diekspresikan dengan logaritma. Sebabnya, dan contoh-contoh yang lebih lengkap, dapat dilihat di skala logaritmik.

  • Negatif dari logaritma berbasis 10 digunakan dalam kimia untuk mengekspresikan konsentrasi ion hidronium (pH). Contohnya, konsentrasi ion hidronium pada air adalah 10−7 pada suhu 25 °C, sehingga pH-nya 7.
  • Satuan bel (dengan simbol B) adalah satuan pengukur perbandingan (rasio), seperti perbandingan nilai daya dan tegangan. Kebanyakan digunakan dalam bidang telekomunikasi, elektronik, dan akustik. Salah satu sebab digunakannya logaritma adalah karena telinga manusia mempersepsikan suara yang terdengar secara logaritmik. Satuan Bel dinamakan untuk mengenang jasa Alexander Graham Bell, seorang penemu di bidang telekomunikasi. Satuan desibel (dB), yang sama dengan 0.1 bel, lebih sering digunakan.
  • Dalam astronomi, magnitudo yang mengukur terangnya bintang menggunakan skala logaritmik, karena mata manusia mempersepsikan terang secara logaritmik.

Penghitungan yang lebih mudah

Logaritma memindahkan fokus penghitungan dari bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama, maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::

Penghitungan dengan angka Penghitungan dengan eksponen Identitas Logaritma
 \!\, a b  \!\, A + B  \!\, \log(a b) = \log(a) + \log(b)
 \!\frac{a}{b}  \!\, A - B  \!\, \log(\frac{a}{b}) = \log(a) - \log(b)
 \!\, a ^ b  \!\, A b  \!\, \log(a ^ b) = b \log(a)
 \!\, \sqrt[b]{a}  \!\, \frac{A}{b}  \!\, \log(\sqrt[b]{a}) = \frac{\log(a)}{b}

Sifat-sifat diatas membuat penghitungan dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting, terutama sebelum tersedianya kalkulator sebagai hasil perkembangan teknologi modern.

Untuk mengkali dua angka, yang diperlukan adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu hanya mengkali atau membagi dengan radix pangkat atau akar tersebut.

Kalkulus

Turunan fungsi logaritma adalah

\frac{d}{dx} \log_b(x) = \frac{1}{x \ln(b)} =  \frac{\log_b(e)}{x}

dimana ln adalah logaritma natural, yaitu logaritma yang berbasis e. Jika b = e, maka rumus diatas dapat disederhanakan menjadi

\frac{d}{dx} \ln(x) = \frac{1}{x}.

Integral fungsi logaritma adalah

\int \log_b(x) \,dx = x \log_b(x) -  \frac{x}{\ln(b)} + C = x \log_b \left(\frac{x}{e}\right) + C

Integral logaritma berbasis e adalah

\int \ln(x) \, dx= x \ln(x) - x + C\,

Sebagai contoh carilah turunan

log(x)

Minggu, 07 November 2010

Pascal Bahasa Pemrograman

Pascal adalah bahasa pemrograman yang pertama kali di buat oleh Profesor Niklaus Wirth, seorang anggota International Federation of Information Processing (IFIP) pada tahun 1971. Dengan mengambil nama dari matematikawan Perancis, Blaise Pascal, yang pertama kali menciptakan mesin penghitung, Profesor Niklaus Wirth membuat bahasa Pascal ini sebagai alat bantu untuk mengajarkan konsep pemrograman komputer kepada mahasiswanya. Selain itu, Profesor Niklaus Wirth membuat Pascal juga untuk melengkapi kekurangan-kekurangan bahasa pemrograman yang ada pada saat itu.

Kelebihan

Kelebihan dari bahasa pemrograman Pascal adalah:

  • Tipe Data Standar, tipe-tipe data standar yang telah tersedia pada kebanyakan bahasa pemrograman. Pascal memiliki tipe data standar: boolean, integer, real, char, string,
  • User defined Data Types, programmer dapat membuat tipe data lain yang diturunkan dari tipe data standar.
  • Strongly-typed, programmer harus menentukan tipe data dari suatu variabel, dan variabel tersebut tidak dapat dipergunakan untuk menyimpan tipe data selain dari format yang ditentukan.
  • Terstruktur, memiliki sintaks yang memungkinkan penulisan program dipecah menjadi fungsi-fungsi kecil (procedure dan function) yang dapat dipergunakan berulang-ulang.
  • Sederhana dan Ekspresif, memiliki struktur yang sederhana dan sangat mendekati bahasa manusia (bahasa Inggris) sehingga mudah dipelajari dan dipahami.

Bahasa PASCAL juga merupakan bahasa yang digunakan sebagai standar bahasa pemrograman bagi tim nasional Olimpiade Komputer Indonesia (TOKI). Selain itu, Bahasa PASCAL masih digunakan dalam IOI (International Olympiad in Informatics).

Tipe Data

Dalam bahasa Pascal terdapat beberapa jenis tipe data yang bisa digunakan untuk sebuah variabel atau konstanta pada program. Tipe Data tersebut antara lain adalah

Tipe Data Deskripsi (range variabel)
Byte angka dari 0 sampai 255
Integer angka dari -32768 to 32767
Real semua nilai pecahan dari 1E-38 to 1E+38
Boolean nilai TRUE atau FALSE
Char semua karakter dari tabel ASCII
String semua huruf, spasi, frase

Hello World

Contoh program Hello World menggunakan bahasa pascal adalah sebagai berikut:

Program HelloWorld;
begin
writeln('Hello world');

end.